feat: prediction script

main
Cizz22 12 months ago
parent caa667f2b8
commit 1d789219dd

1263
poetry.lock generated

File diff suppressed because it is too large Load Diff

@ -7,7 +7,7 @@ license = "MIT"
readme = "README.md"
[tool.poetry.dependencies]
python = "^3.11"
python = "^3.10"
fastapi = {extras = ["standard"], version = "^0.115.6"}
sqlalchemy = "^2.0.36"
httpx = "^0.27.2"

@ -0,0 +1,180 @@
from modules.config import get_connection
from psycopg2.extras import DictCursor
import numpy_financial as npf
import json
class Eac:
def __init__(self):
pass
def __calculate_npv_with_db_inflation_rate(self, equipment_id):
try:
# Mendapatkan koneksi dari config.py
connection = get_connection()
if connection is None:
print("Koneksi ke database gagal.")
return None
# Membuat cursor menggunakan DictCursor
cursor = connection.cursor(cursor_factory=DictCursor)
# Query untuk mendapatkan data2 dasar
query_inflation_rate = """
select
(SELECT value_num / 100 FROM lcc_ms_master WHERE name = 'inflation_rate') as inflation_rate
, (SELECT value_num / 100 FROM lcc_ms_master WHERE name = 'discount_rate') as discount_rate
, (select COALESCE(rc_total_cost,0) from lcc_tr_data ltd where equipment_id = %s and seq = 0) as rc_total_cost_0
;
"""
cursor.execute(query_inflation_rate, (equipment_id,))
inflation_rate_result = cursor.fetchone()
if not inflation_rate_result:
print("Inflation rate tidak ditemukan.")
return None
inflation_rate = inflation_rate_result['inflation_rate']
disc_rate = inflation_rate_result['discount_rate']
rc_total_cost_0 = inflation_rate_result['rc_total_cost_0']
last_seq = 0
last_npv = 0
# Query untuk mendapatkan data dengan seq dan is_actual
query_data_actual = """
SELECT equipment_id, tahun, seq, is_actual, rc_total_cost
FROM lcc_tr_data
WHERE is_actual = 1 AND seq != 0
AND equipment_id = %s
ORDER BY seq;
"""
cursor.execute(query_data_actual, (equipment_id,))
data_actual = cursor.fetchall()
# Variabel untuk menyimpan hasil NPV dan PMT per baris
npv_results = []
cumulative_values = [] # Menyimpan nilai kumulatif hingga baris ke-n
# Menghitung NPV dan PMT secara bertahap untuk data aktual
for idx, row in enumerate(data_actual):
cumulative_values.append(row['rc_total_cost'])
# Menghitung NPV menggunakan rumus diskonto
final_value = sum(
value / ((1 + inflation_rate) ** (i + 1)) for i, value in enumerate(cumulative_values))
# Menghitung PMT
pmt_value = -npf.pmt(inflation_rate, row['seq'], final_value)
pmt_aq_cost = -npf.pmt(disc_rate, row['seq'], rc_total_cost_0)
eac = pmt_value + pmt_aq_cost
npv_results.append({
'seq': row['seq'],
'year': row['tahun'],
'npv': final_value,
'pmt': pmt_value,
'pmt_aq_cost': pmt_aq_cost,
'eac': eac,
'is_actual': 1
})
# Update lcc_tr_data
update_query = """
UPDATE lcc_tr_data
SET eac_npv = %s, eac_annual_mnt_cost = %s, eac_annual_acq_cost = %s, eac_eac = %s
, updated_by = 'Sys', updated_at = NOW()
WHERE equipment_id = %s AND tahun = %s;
"""
cursor.execute(update_query, (final_value, pmt_value, pmt_aq_cost, eac, equipment_id, row['tahun']))
last_seq = row['seq']
last_npv = final_value
# Commit perubahan
connection.commit()
# Query untuk mendapatkan data dengan seq dan is_actual = 0
query_data_proyeksi = """
SELECT equipment_id, tahun, seq, is_actual, rc_total_cost
FROM lcc_tr_data
WHERE is_actual = 0
ORDER BY seq;
"""
cursor.execute(query_data_proyeksi)
data_proyeksi = cursor.fetchall()
cumulative_values = []
# Menghitung NPV dan PMT secara bertahap untuk data proyeksi
for idx, row in enumerate(data_proyeksi):
cumulative_values.append(row['rc_total_cost'])
npv_value = sum(value / ((1 + inflation_rate) ** (i + 1)) for i, value in enumerate(cumulative_values))
pv_value = npf.pv(inflation_rate, last_seq, 0, npv_value)
final_value = -pv_value + last_npv
# Menghitung PMT
pmt_value = -npf.pmt(inflation_rate, row['seq'], final_value)
pmt_aq_cost = -npf.pmt(disc_rate, row['seq'], rc_total_cost_0)
eac = pmt_value + pmt_aq_cost
npv_results.append({
'seq': row['seq'],
'year': row['tahun'],
'npv': final_value,
'pmt': pmt_value,
'pmt_aq_cost': pmt_aq_cost,
'eac': eac,
'is_actual': 0
})
# Update lcc_tr_data
update_query = """
UPDATE lcc_tr_data
SET eac_npv = %s, eac_annual_mnt_cost = %s, eac_annual_acq_cost = %s, eac_eac = %s
, updated_by = 'Sys', updated_at = NOW()
WHERE equipment_id = %s AND tahun = %s;
"""
cursor.execute(update_query, (final_value, pmt_value, pmt_aq_cost, eac, equipment_id, row['tahun']))
# Commit perubahan
connection.commit()
# Menutup koneksi
cursor.close()
connection.close()
# Menampilkan hasil
for result in npv_results:
print(
f"Seq: {result['seq']}, Is Actual: {result['is_actual']}, NPV: {result['npv']:.2f}, PMT: {result['pmt']:.2f}, AQ_COST: {result['pmt_aq_cost']:.2f}, EAC: {result['eac']:.2f}")
return npv_results
except Exception as e:
print("Terjadi kesalahan:", str(e))
# ======================================================================================================================================================
def hitung_eac_equipment(self, p_equipment_id):
try:
# Mendapatkan koneksi dari config.py
connection = get_connection()
if connection is None:
print("Koneksi ke database gagal.")
return None
cursor = connection.cursor(cursor_factory=DictCursor)
rslt = self.__calculate_npv_with_db_inflation_rate(p_equipment_id)
lowest_eac_record = min(rslt, key=lambda x: x['eac'])
print(json.dumps(lowest_eac_record))
# Update lcc_tr_data
update_query = """
UPDATE lcc_ms_equipment_data
SET min_eac_info = %s, updated_by = 'Sys', updated_at = NOW()
WHERE equipment_id = %s;
"""
cursor.execute(update_query, (json.dumps(lowest_eac_record), p_equipment_id))
connection.commit()
cursor.close()
connection.close()
except Exception as e:
print("Terjadi kesalahan saat memproses semua equipment:", str(e))

@ -0,0 +1,367 @@
import pandas as pd
import numpy as np
import numpy_financial as npf # Gunakan numpy-financial untuk fungsi keuangan
from statsmodels.tsa.holtwinters import ExponentialSmoothing
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
import matplotlib.pyplot as plt
from uuid import uuid4
from modules.config import get_connection
from psycopg2.extras import DictCursor
class Prediksi:
def __init__(self):
pass
# Fungsi untuk mengambil data dari database
def __get_param(self, equipment_id):
try:
# Mendapatkan koneksi dari config.py
connection = get_connection()
if connection is None:
print("Koneksi ke database gagal.")
return None
# Membuat cursor menggunakan DictCursor
cursor = connection.cursor(cursor_factory=DictCursor)
# Query untuk mendapatkan data
query = """
SELECT
(select COALESCE(forecasting_target_year, 2060) from lcc_ms_equipment_data where equipment_id = %s) AS forecasting_target_year
"""
cursor.execute(query, (equipment_id,))
par1 = cursor.fetchone()
return par1["forecasting_target_year"]
except Exception as e:
print(f"Error saat mengambil data dari database: {e}")
return None
finally:
if connection:
connection.close()
# Fungsi untuk mengambil data dari database
def __fetch_data_from_db(self, equipment_id):
try:
# Mendapatkan koneksi dari config.py
connection = get_connection()
if connection is None:
print("Koneksi ke database gagal.")
return None
# Membuat cursor menggunakan DictCursor
cursor = connection.cursor(cursor_factory=DictCursor)
# Query untuk mendapatkan data
query = """
SELECT
tahun AS year,
raw_cm_interval AS cm_interval,
raw_cm_material_cost AS cm_cost,
raw_cm_labor_time AS cm_labor_time,
raw_cm_labor_human AS cm_labor_human,
raw_pm_material_cost AS pm_cost,
raw_pm_labor_time AS pm_labor_time,
raw_pm_labor_human AS pm_labor_human,
raw_oh_material_cost AS oh_cost,
raw_oh_labor_time AS oh_labor_time,
raw_oh_labor_human AS oh_labor_human,
"raw_loss_output_MW" AS loss_output_mw,
raw_loss_output_price AS loss_price
FROM lcc_tr_data
WHERE equipment_id = %s
and is_actual=1
;
"""
cursor.execute(query, (equipment_id,))
# Mengambil hasil dan mengonversi ke DataFrame pandas
data = cursor.fetchall()
columns = [desc[0] for desc in cursor.description] # Mengambil nama kolom dari hasil query
df = pd.DataFrame(data, columns=columns)
return df
except Exception as e:
print(f"Error saat mengambil data dari database: {e}")
return None
finally:
if connection:
connection.close()
# Fungsi untuk prediksi menggunakan Future Value (FV)
def __future_value_predict(self, rate, nper, pmt, pv, years):
# Hitung Future Value untuk tahun-tahun proyeksi
fv_values = []
for i in range(len(years)):
fv = npf.fv(rate, nper + i, pmt, pv) # Menggunakan numpy_financial.fv
fv_values.append(fv)
return fv_values
# Fungsi untuk menghapus data proyeksi pada tahun tertentu
def __delete_predictions_from_db(self, equipment_id):
try:
connection = get_connection()
if connection is None:
print("Koneksi ke database gagal.")
return
cursor = connection.cursor()
# Query untuk menghapus data berdasarkan tahun proyeksi
delete_query = """
DELETE FROM lcc_tr_data
WHERE equipment_id = %s AND is_actual = 0;
""" # Asumsikan kolom is_actual digunakan untuk membedakan data proyeksi dan data aktual
# Eksekusi query delete
cursor.execute(delete_query, (equipment_id,))
connection.commit()
print(f"Data proyeksi untuk tahun {equipment_id} berhasil dihapus.")
except Exception as e:
print(f"Error saat menghapus data proyeksi dari database: {e}")
finally:
if connection:
connection.close()
# Fungsi untuk menyimpan data proyeksi ke database
def __insert_predictions_to_db(self, data, equipment_id):
try:
connection = get_connection()
if connection is None:
print("Koneksi ke database gagal.")
return
cursor = connection.cursor()
# Query untuk mendapatkan nilai maksimum seq
get_max_seq_query = """
SELECT COALESCE(MAX(seq), 0) FROM lcc_tr_data WHERE equipment_id = %s
"""
cursor.execute(get_max_seq_query, (equipment_id,))
max_seq = cursor.fetchone()[0]
# Query untuk insert data
insert_query = """
INSERT INTO lcc_tr_data (
id,
seq,
is_actual,
raw_pm_interval,
tahun, equipment_id,
raw_cm_interval, raw_cm_material_cost, raw_cm_labor_time, raw_cm_labor_human,
raw_pm_material_cost, raw_pm_labor_time, raw_pm_labor_human,
raw_oh_material_cost, raw_oh_labor_time, raw_oh_labor_human,
"raw_loss_output_MW", raw_loss_output_price
, created_by, created_at
) VALUES (
%s, %s, 0, 1, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, 'Sys', NOW()
)
"""
# Menyiapkan data untuk batch insert
records_to_insert = []
for _, row in data.iterrows():
max_seq = max_seq + 1
records_to_insert.append((
str(uuid4()), max_seq, row["year"], equipment_id,
row["cm_interval"] if row["cm_interval"] >= 1 else 1, row["cm_cost"], row["cm_labor_time"],
row["cm_labor_human"],
row["pm_cost"], row["pm_labor_time"], row["pm_labor_human"],
row["oh_cost"], row["oh_labor_time"], row["oh_labor_human"],
row["loss_output_mw"], row["loss_price"]
))
# Eksekusi batch insert
cursor.executemany(insert_query, records_to_insert)
connection.commit()
print("Data proyeksi berhasil dimasukkan ke database.")
except Exception as e:
print(f"Error saat menyimpan data ke database: {e}")
finally:
if connection:
connection.close()
# Fungsi untuk menghapus data proyeksi pada tahun tertentu
def __update_date_lcc(self, equipment_id):
try:
connection = get_connection()
if connection is None:
print("Koneksi ke database gagal.")
return
cursor = connection.cursor()
# Query untuk menghapus data berdasarkan tahun proyeksi
up_query = """
update lcc_tr_data
set
rc_cm_material_cost = raw_cm_material_cost
,rc_cm_labor_cost = (raw_cm_interval * raw_cm_labor_time * raw_cm_labor_human * COALESCE((SELECT man_hour FROM lcc_ms_year_data WHERE year = lcc_tr_data.tahun), coalesce((select value_num from lcc_ms_master where name='manhours_rate'), 0)) )
,rc_pm_material_cost = raw_pm_material_cost
,rc_pm_labor_cost = (raw_pm_labor_time * raw_pm_labor_human * COALESCE((SELECT man_hour FROM lcc_ms_year_data WHERE year = lcc_tr_data.tahun), coalesce((select value_num from lcc_ms_master where name='manhours_rate'), 0)) )
,rc_predictive_labor_cost = COALESCE( (raw_predictive_labor_time * raw_predictive_labor_human * COALESCE((SELECT man_hour FROM lcc_ms_year_data WHERE year = lcc_tr_data.tahun), coalesce((select value_num from lcc_ms_master where name='manhours_rate'), 0)) ) , 0)
,rc_oh_material_cost = raw_oh_material_cost
,rc_oh_labor_cost = (raw_oh_labor_time * raw_oh_labor_human * COALESCE((SELECT man_hour FROM lcc_ms_year_data WHERE year = lcc_tr_data.tahun), coalesce((select value_num from lcc_ms_master where name='manhours_rate'), 0)) )
,rc_project_material_cost = coalesce(raw_project_task_material_cost, 0)
,rc_lost_cost = coalesce(("raw_loss_output_MW" * raw_loss_output_price * raw_cm_interval), 0) * 1000
,rc_operation_cost = coalesce(raw_operational_cost, 0)
,rc_maintenance_cost = coalesce(raw_maintenance_cost, 0)
,rc_total_cost = (
raw_cm_material_cost
+ (raw_cm_interval * raw_cm_labor_time * raw_cm_labor_human * COALESCE((SELECT man_hour FROM lcc_ms_year_data WHERE year = lcc_tr_data.tahun), coalesce((select value_num from lcc_ms_master where name='manhours_rate'), 0)) )
+ raw_pm_material_cost
+ (raw_pm_labor_time * raw_pm_labor_human * COALESCE((SELECT man_hour FROM lcc_ms_year_data WHERE year = lcc_tr_data.tahun), coalesce((select value_num from lcc_ms_master where name='manhours_rate'), 0)) )
+ COALESCE( (raw_predictive_labor_time * raw_predictive_labor_human * COALESCE((SELECT man_hour FROM lcc_ms_year_data WHERE year = lcc_tr_data.tahun), coalesce((select value_num from lcc_ms_master where name='manhours_rate'), 0)) ) , 0)
+ raw_oh_material_cost
+ (raw_oh_labor_time * raw_oh_labor_human * COALESCE((SELECT man_hour FROM lcc_ms_year_data WHERE year = lcc_tr_data.tahun), coalesce((select value_num from lcc_ms_master where name='manhours_rate'), 0)) )
+ coalesce(raw_project_task_material_cost, 0)
+ coalesce(("raw_loss_output_MW" * raw_loss_output_price * raw_cm_interval), 0) * 1000
+ coalesce(raw_operational_cost, 0)
+ coalesce(raw_maintenance_cost, 0)
)
, updated_by = 'Sys', updated_at = NOW()
where equipment_id = %s;
update lcc_tr_data set rc_total_cost = (select acquisition_cost from lcc_ms_equipment_data where equipment_id=lcc_tr_data.equipment_id) where equipment_id = %s and seq=0;
""" # Asumsikan kolom is_actual digunakan untuk membedakan data proyeksi dan data aktual
# Eksekusi query delete
cursor.execute(up_query, (equipment_id, equipment_id))
connection.commit()
print(f"Data berhasil diupdate.")
except Exception as e:
print(f"Error saat update data proyeksi dari database: {e}")
finally:
if connection:
connection.close()
# Fungsi untuk mengambil parameter dari database
def __get_rate_and_max_year(self, equipment_id):
try:
connection = get_connection()
if connection is None:
print("Koneksi ke database gagal.")
return None, None
cursor = connection.cursor(cursor_factory=DictCursor)
# Query untuk mendapatkan rate dan max_year
query = """
SELECT
(SELECT value_num / 100 FROM lcc_ms_master where name='inflation_rate') AS rate,
(SELECT MAX(tahun) FROM lcc_tr_data WHERE is_actual = 1 AND equipment_id = %s) AS max_year
"""
cursor.execute(query, (equipment_id,))
result = cursor.fetchone()
# Debug hasil query
print(f"Result: {result}")
rate = result["rate"]
max_year = result["max_year"]
# Validasi nilai rate dan max_year
if rate is None:
raise Exception("Nilai 'rate' tidak boleh kosong. Periksa tabel 'lcc_ms_master'.")
if max_year is None:
raise Exception("Nilai 'max_year' tidak boleh kosong. Periksa tabel 'lcc_tr_data'.")
return rate, max_year
except Exception as e:
print(f"Error saat mendapatkan parameter dari database: {e}")
raise # Lempar kembali exception agar program berhenti
finally:
if connection:
connection.close()
# ======================================================================================================================================================
def predict_equipment_data(self, p_equipment_id):
try:
# Mengambil data dari database
df = self.__fetch_data_from_db(p_equipment_id)
if df is None:
print("Data tidak tersedia untuk prediksi.")
return
# Mendapatkan tahun proyeksi dari DB
par_tahun_target = self.__get_param(p_equipment_id)
# Tahun proyeksi
future_years = list(range(df["year"].max() + 1, par_tahun_target + 1))
# Hasil prediksi
predictions = {"year": future_years}
# Fungsi untuk prediksi menggunakan Linear Regression
def linear_regression_predict(column, years):
x = df["year"].values.reshape(-1, 1)
y = df[column].fillna(0).values
model = LinearRegression()
model.fit(x, y)
future_x = np.array(years).reshape(-1, 1)
preds = model.predict(future_x)
return np.abs(preds)
# Fungsi untuk prediksi menggunakan Exponential Smoothing
def exponential_smoothing_predict(column, years):
data_series = df[column].fillna(0).values
model = ExponentialSmoothing(data_series, trend="add", seasonal=None, seasonal_periods=None)
model_fit = model.fit()
preds = model_fit.forecast(len(years))
return np.abs(preds)
# Fungsi untuk prediksi menggunakan Decision Tree
def decision_tree_predict(column, years):
x = df["year"].values.reshape(-1, 1)
y = df[column].fillna(0).values
model = DecisionTreeRegressor()
model.fit(x, y)
future_x = np.array(years).reshape(-1, 1)
preds = model.predict(future_x)
return np.abs(preds)
# Mendapatkan rate dan tahun maksimal
rate, max_year = self.__get_rate_and_max_year(p_equipment_id)
pmt = 0
# Prediksi untuk setiap kolom
for column in df.columns:
if column != "year":
if "cost" in column.lower():
# Prediksi Future Value
nper = max_year - df["year"].max()
pv = -df[column].iloc[-1]
predictions[column] = self.__future_value_predict(rate, nper, pmt, pv, future_years)
elif df[column].nunique() < 5:
predictions[column] = exponential_smoothing_predict(column, future_years)
elif df[column].isnull().sum() > 0:
predictions[column] = decision_tree_predict(column, future_years)
else:
predictions[column] = linear_regression_predict(column, future_years)
# Konversi hasil ke DataFrame
predictions_df = pd.DataFrame(predictions)
# Hapus data prediksi yang ada sebelumnya
self.__delete_predictions_from_db(p_equipment_id)
# Insert hasil prediksi ke database
self.__insert_predictions_to_db(predictions_df, p_equipment_id)
# Update data untuk total RiskCost per tahun
self.__update_date_lcc(p_equipment_id)
except Exception as e:
print(f"Program dihentikan: {e}")

@ -0,0 +1,24 @@
import psycopg2
def get_connection():
try:
# Konfigurasi koneksi database
# connection = psycopg2.connect(
# host="localhost",
# port=5432,
# database="postgres",
# user="postgres",
# password="ariwa"
# )
connection = psycopg2.connect(
dbname = "digital_twin",
user = "postgres",
password = "postgres",
host = "192.168.1.85",
port = "5432"
)
return connection
except Exception as e:
print("Error saat koneksi ke database:", e)
return None

Binary file not shown.

@ -0,0 +1,343 @@
import subprocess
import openpyxl
from openpyxl.utils import get_column_letter
from openpyxl.styles import PatternFill
from datetime import datetime
import time
import sys
import os
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
from config import get_connection
ROOT_DIR = os.path.abspath(os.path.dirname(__file__))
file_ref = f"{ROOT_DIR}/wlc.xlsx"
file_hasil = f"{ROOT_DIR}/hasil/wlc.xlsx"
start_time = time.time()
conn = get_connection()
if conn is None:
print("Koneksi ke database gagal.")
sys.exit(1)
cur = conn.cursor()
# Fungsi untuk mengambil data dari PostgreSQL
def fetch_data_from_postgresql(q=""):
try:
cur.execute(q) # Jalankan query yang diberikan
col_names = [desc[0] for desc in cur.description] # Ambil nama kolom
rows = cur.fetchall() # Ambil semua baris data
# Buat list dictionary berdasarkan nama kolom
result = [dict(zip(col_names, row)) for row in rows]
return result
except Exception as e:
print(f"Error: {e}")
return None
def insert_and_shift_right(file_path, sheet_name):
# Load workbook and select sheet
wb = openpyxl.load_workbook(file_path)
sheet = wb[sheet_name]
# Get the last two columns
max_col = sheet.max_column
last_two_cols = [max_col - 1, max_col]
# Insert a new column after the last two columns
new_col_idx = max_col + 1
sheet.insert_cols(new_col_idx)
# Shift formulas, values, and styles
for row in range(1, sheet.max_row + 1):
for col in last_two_cols:
current_cell = sheet.cell(row=row, column=col)
current_value = current_cell.value
if isinstance(current_value, str) and current_value.startswith("="):
# Adjust formula to the new column
formula = current_value.replace(get_column_letter(col), get_column_letter(new_col_idx))
sheet.cell(row=row, column=new_col_idx, value=formula)
else:
sheet.cell(row=row, column=new_col_idx, value=current_value)
# Copy cell style (fill color)
new_cell = sheet.cell(row=row, column=new_col_idx)
if current_cell.fill:
new_cell.fill = PatternFill(start_color=current_cell.fill.start_color.rgb,
end_color=current_cell.fill.end_color.rgb,
fill_type=current_cell.fill.fill_type)
# Save workbook with changes
wb.save(file_path)
print(f"Column inserted and shifted to the right in {file_path}")
def insert_column_data(file_path, sheet_name, col_name, data):
"""
Memasukkan data ke Excel per kolom.
Args:
file_path (str): Path file Excel.
sheet_name (str): Nama sheet Excel.
col_name (str): Nama kolom untuk dicari di baris pertama.
data (dict): Data yang akan dimasukkan, dengan kunci adalah baris (row_name) dan nilai adalah isi sel.
"""
# Load workbook dan pilih sheet
wb = openpyxl.load_workbook(file_path, data_only=False)
sheet = wb[sheet_name]
# Temukan indeks kolom berdasarkan col_name di baris pertama
col_index = None
for col in range(1, sheet.max_column + 1):
if sheet.cell(row=1, column=col).value == col_name:
col_index = col
break
# Jika kolom ditemukan, masukkan data per baris
if col_index:
for row_name, value in data.items():
row_index = None
# Cari indeks baris berdasarkan nama di kolom pertama
for row in range(2, sheet.max_row + 1): # Mulai dari baris ke-2 untuk menghindari header
if sheet.cell(row=row, column=1).value == row_name:
row_index = row
break
# Isi nilai jika baris ditemukan
if row_index:
sheet.cell(row=row_index, column=col_index, value=value)
else:
print(f"Column name '{col_name}' not found in the sheet.")
# Simpan workbook setelah semua data kolom dimasukkan
wb.save(file_path)
wb.close()
wb.save(file_path)
def insert_param(file_path):
wb = openpyxl.load_workbook(file_path, data_only=False)
sheet = wb["Params"]
col_name = "Value"
# Temukan indeks kolom berdasarkan col_name di baris pertama
col_index = None
for col in range(1, sheet.max_column + 1):
if sheet.cell(row=1, column=col).value == col_name:
col_index = col
break
query = """SELECT
value_str,
CASE
WHEN unit_of_measurement = '%' THEN value_num / 100
ELSE value_num
END AS value_num
FROM lcc_ms_master"""
data_map = fetch_data_from_postgresql(query)
mapping_data = {}
for item in data_map:
mapping_data[item['value_str']] = round(item['value_num'], 2)
# Jika kolom ditemukan, masukkan data per baris
if col_index:
for row in range(2, sheet.max_row + 1): # Mulai dari baris ke-2 untuk menghindari header
param_name = sheet.cell(row=row, column=1).value # Kolom 1 == value_str
if param_name in mapping_data:
sheet.cell(row=row, column=col_index, value=mapping_data[param_name])
else:
print(f"Params: Baris name '{col_name}' not found in the sheet.")
# Simpan workbook setelah semua data diperbarui
wb.save(file_path)
wb.close()
def get_abjad(i):
if i < 0:
raise ValueError("Indeks harus berupa angka 0 atau lebih.")
result = ""
while i >= 0:
i, remainder = divmod(i, 26)
result = chr(65 + remainder) + result
i -= 1 # Mengurangi 1 untuk menangani offset ke basis 0
return result
def validate_number(n):
return n if n is not None else 0
# Example usage
# insert_and_shift_right(file_ref, "Calc")
# ====================================================== 00000 =================================================
# =============================================== SET DATA KE EXCEL =================================================
# ====================================================== 00000 =================================================
# insert PARAM
insert_param(file_ref)
print("Insert Params Sukses")
# Pengolahan data dari PostgreSQL
current_year = datetime.now().year
query = "SELECT * FROM lcc_plant_tr_data ORDER BY seq"
data = fetch_data_from_postgresql(query)
if data:
for record in data:
# print(f"Processing column for year {record['tahun']}")
# Kumpulkan semua data untuk satu kolom
col_data = {}
# Tambahkan data tambahan berdasarkan kondisi
if record['is_actual'] == 1:
col_data.update({
"Net Capacity Factor": validate_number(record['net_capacity_factor']),
"EAF": validate_number(record['eaf']),
"Biaya Investasi Tambahan": validate_number(record['cost_a_pinjaman'])/1000000,
"O & M Cost": validate_number(record['cost_bd_om'])/1000000,
"Periodic Maintenance Cost (Non MI)": validate_number(record['cost_bd_pm_nonmi'])/1000000,
"Production (Bruto)": validate_number(record['production_bruto']),
"Production (Netto)": validate_number(record['production_netto']),
"Fuel Consumption": validate_number(record['fuel_consumption']),
"Revenue A": validate_number(record['revenue_a'])/1000000,
"Revenue B": validate_number(record['revenue_b'])/1000000,
"Revenue C": validate_number(record['revenue_c'])/1000000,
"Revenue D": validate_number(record['revenue_d'])/1000000,
"Fuel Cost": validate_number(record['cost_c_fuel'])/1000000
})
else:
seq_offset = record['seq'] + 2
col_data.update({
"Net Capacity Factor": validate_number(record['net_capacity_factor']),
"EAF": validate_number(record['eaf']),
"Biaya Investasi Tambahan": validate_number(record['cost_a_pinjaman'])/1000000,
"O & M Cost": validate_number(record['cost_bd_om'])/1000000,
"Periodic Maintenance Cost (Non MI)": validate_number(record['cost_bd_pm_nonmi'])/1000000,
"Production (Bruto)": f"={get_abjad(seq_offset)}7/(100-SUM(Params!$C$16:$C$17))*100",
"Production (Netto)": f"={get_abjad(seq_offset)}4*8760*Params!$C$15/100",
"Fuel Consumption": f"={get_abjad(seq_offset)}6*Params!$C$18",
"Revenue A": f"=(Params!$C$19*{get_abjad(seq_offset)}5*Params!$C$15*1000*12/100)/1000000",
"Revenue B": f"=(Params!$C$20*{get_abjad(seq_offset)}5*Params!$C$15*1000*12/100)/1000000",
"Revenue C": f"=Params!$C$21*{get_abjad(seq_offset)}7*1000/1000000",
"Revenue D": f"=Params!$C$22*{get_abjad(seq_offset)}7*1000/1000000",
"Fuel Cost": f"={get_abjad(seq_offset)}9*Params!$C$23/10^6"
})
# Masukkan data ke Excel
insert_column_data(file_ref, "Calc", record['tahun'], col_data)
else:
print("No data found.")
# ====================================================== 00000 =================================================
# =============================================== SIMPAN UNTUK CHART =================================================
# ====================================================== 00000 =================================================
# Mapping dari kolom Excel ke nama kolom database sesuai gambar 2
libreoffice_path = "soffice" # Sesuaikan dengan lokasi di Linux/Windows
command = f'"{libreoffice_path}" --headless --convert-to xlsx {file_ref} --outdir {ROOT_DIR}/hasil'
subprocess.run(command, shell=True, check=True)
print("recalculate OK")
# def read_excel_with_pandas(file_path, sheet_name):
# df = pd.read_excel(file_path, sheet_name=sheet_name, engine='openpyxl')
# print(df.head()) # Periksa apakah nilai diambil dengan benar
# read_excel_with_pandas(f"{file_hasil}", "Upload")
#
column_mapping = {
"Total Revenue": "chart_total_revenue",
"Revenue A": "chart_revenue_a",
"Revenue B": "chart_revenue_b",
"Revenue C": "chart_revenue_c",
"Revenue D": "chart_revenue_d",
"Revenue Annualized": "chart_revenue_annualized",
"Fuel Cost (Component C)": "chart_fuel_cost_component_c",
"Fuel Cost": "chart_fuel_cost",
"Fuel Cost Annualized": "chart_fuel_cost_annualized",
"O and M Cost (Component B and D)": "chart_oem_component_bd",
"O and M Cost": "chart_oem_bd_cost",
"Periodic Maintenance Cost (NonMI)": "chart_oem_periodic_maintenance_cost",
"O and M Cost Annualized": "chart_oem_annualized",
"Capex (Component A)": "chart_capex_component_a",
"Biaya Investasi Tambahan": "chart_capex_biaya_investasi_tambahan",
"Acquisition Cost": "chart_capex_acquisition_cost",
"Capex Annualized": "chart_capex_annualized"
}
# Fungsi untuk memperbarui database
def update_database_from_excel():
# Buka koneksi ke PostgreSQL
try:
# Load workbook dan pilih sheet
wb = openpyxl.load_workbook(f"{file_hasil}", data_only=True)
sheet = wb["Upload"]
# Ambil tahun dari baris pertama mulai dari kolom ketiga
years = [sheet.cell(row=1, column=col).value for col in range(3, sheet.max_column + 1)]
# Loop melalui setiap baris di Excel mulai dari baris kedua
for row in range(2, sheet.max_row + 1):
row_name = sheet.cell(row=row, column=1).value # Nama data di kolom pertama
row_name = row_name if row_name else sheet.cell(row=row,column=2).value # Nama data di kolom kedua jika kolom pertama kosong
db_column = column_mapping.get(row_name)
if db_column:
for col_index, year in enumerate(years, start=3): # Iterasi mulai dari kolom ke-3
value = sheet.cell(row=row, column=col_index).value
if value is None:
continue
# Lakukan update data ke database
query = f"""
UPDATE lcc_plant_tr_data
SET {db_column} = %s
WHERE tahun = %s
"""
seq = sheet.cell(row=row, column=2).value # Ambil seq dari kolom kedua jika dibutuhkan
cur.execute(query, (value, year)) # Jalankan query dengan parameter
conn.commit()
print("Data successfully updated in database.")
except Exception as e:
conn.rollback()
print(f"Error: {e}")
update_database_from_excel()
cur.close()
conn.close()
end_time = time.time()
elapsed_time = end_time - start_time
minutes = int(elapsed_time // 60)
seconds = int(elapsed_time % 60)
# Cetak hasil
print(f"Execution time: {minutes} minutes and {seconds} seconds")

Binary file not shown.

@ -1,3 +1,8 @@
import asyncio
import os
import logging
from subprocess import PIPE
from sqlalchemy import Select, Delete, cast, String
from .model import PlantTransactionData
from .schema import PlantTransactionDataCreate, PlantTransactionDataUpdate
@ -7,6 +12,8 @@ from typing import Optional
from src.database.core import DbSession
from src.auth.service import CurrentUser
logger = logging.getLogger(__name__)
async def get(
*, db_session: DbSession, transaction_data_id: str
@ -59,6 +66,41 @@ async def create(
transaction_data = PlantTransactionData(**transaction_data_in.model_dump())
db_session.add(transaction_data)
await db_session.commit()
# Get the directory of the current file
# directory_path = "../modules/plant"
directory_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '../modules/plant'))
# Construct path to the script
script_path = os.path.join(directory_path, "run.py")
if not os.path.exists(script_path):
logger.error(f"Script not found at path: {script_path}")
raise FileNotFoundError(f"Script not found at path: {script_path}")
# Execute script
try:
process = await asyncio.create_subprocess_exec(
"python",
script_path,
stdout=PIPE,
stderr=PIPE,
cwd=directory_path
)
stdout, stderr = await process.communicate()
if process.returncode != 0:
error_message = stderr.decode()
logger.error(f"Script execution failed: {error_message}")
# Depending on your requirements, you might want to raise an exception here
else:
logger.info(f"Script executed successfully: {stdout.decode()}")
except asyncio.SubprocessError as e:
logger.error(f"Failed to execute script: {e}")
raise Exception(f"Failed to execute script: {e}")
# Handle subprocess error appropriately
return transaction_data

Loading…
Cancel
Save