You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

368 lines
16 KiB
Python

import pandas as pd
import numpy as np
import numpy_financial as npf # Gunakan numpy-financial untuk fungsi keuangan
from statsmodels.tsa.holtwinters import ExponentialSmoothing
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
import matplotlib.pyplot as plt
from uuid import uuid4
from modules.config import get_connection
from psycopg2.extras import DictCursor
class Prediksi:
def __init__(self):
pass
# Fungsi untuk mengambil data dari database
def __get_param(self, equipment_id):
try:
# Mendapatkan koneksi dari config.py
connection = get_connection()
if connection is None:
print("Koneksi ke database gagal.")
return None
# Membuat cursor menggunakan DictCursor
cursor = connection.cursor(cursor_factory=DictCursor)
# Query untuk mendapatkan data
query = """
SELECT
(select COALESCE(forecasting_target_year, 2060) from lcc_ms_equipment_data where equipment_id = %s) AS forecasting_target_year
"""
cursor.execute(query, (equipment_id,))
par1 = cursor.fetchone()
return par1["forecasting_target_year"]
except Exception as e:
print(f"Error saat mengambil data dari database: {e}")
return None
finally:
if connection:
connection.close()
# Fungsi untuk mengambil data dari database
def __fetch_data_from_db(self, equipment_id):
try:
# Mendapatkan koneksi dari config.py
connection = get_connection()
if connection is None:
print("Koneksi ke database gagal.")
return None
# Membuat cursor menggunakan DictCursor
cursor = connection.cursor(cursor_factory=DictCursor)
# Query untuk mendapatkan data
query = """
SELECT
tahun AS year,
raw_cm_interval AS cm_interval,
raw_cm_material_cost AS cm_cost,
raw_cm_labor_time AS cm_labor_time,
raw_cm_labor_human AS cm_labor_human,
raw_pm_material_cost AS pm_cost,
raw_pm_labor_time AS pm_labor_time,
raw_pm_labor_human AS pm_labor_human,
raw_oh_material_cost AS oh_cost,
raw_oh_labor_time AS oh_labor_time,
raw_oh_labor_human AS oh_labor_human,
"raw_loss_output_MW" AS loss_output_mw,
raw_loss_output_price AS loss_price
FROM lcc_tr_data
WHERE equipment_id = %s
and is_actual=1
;
"""
cursor.execute(query, (equipment_id,))
# Mengambil hasil dan mengonversi ke DataFrame pandas
data = cursor.fetchall()
columns = [desc[0] for desc in cursor.description] # Mengambil nama kolom dari hasil query
df = pd.DataFrame(data, columns=columns)
return df
except Exception as e:
print(f"Error saat mengambil data dari database: {e}")
return None
finally:
if connection:
connection.close()
# Fungsi untuk prediksi menggunakan Future Value (FV)
def __future_value_predict(self, rate, nper, pmt, pv, years):
# Hitung Future Value untuk tahun-tahun proyeksi
fv_values = []
for i in range(len(years)):
fv = npf.fv(rate, nper + i, pmt, pv) # Menggunakan numpy_financial.fv
fv_values.append(fv)
return fv_values
# Fungsi untuk menghapus data proyeksi pada tahun tertentu
def __delete_predictions_from_db(self, equipment_id):
try:
connection = get_connection()
if connection is None:
print("Koneksi ke database gagal.")
return
cursor = connection.cursor()
# Query untuk menghapus data berdasarkan tahun proyeksi
delete_query = """
DELETE FROM lcc_tr_data
WHERE equipment_id = %s AND is_actual = 0;
""" # Asumsikan kolom is_actual digunakan untuk membedakan data proyeksi dan data aktual
# Eksekusi query delete
cursor.execute(delete_query, (equipment_id,))
connection.commit()
print(f"Data proyeksi untuk tahun {equipment_id} berhasil dihapus.")
except Exception as e:
print(f"Error saat menghapus data proyeksi dari database: {e}")
finally:
if connection:
connection.close()
# Fungsi untuk menyimpan data proyeksi ke database
def __insert_predictions_to_db(self, data, equipment_id):
try:
connection = get_connection()
if connection is None:
print("Koneksi ke database gagal.")
return
cursor = connection.cursor()
# Query untuk mendapatkan nilai maksimum seq
get_max_seq_query = """
SELECT COALESCE(MAX(seq), 0) FROM lcc_tr_data WHERE equipment_id = %s
"""
cursor.execute(get_max_seq_query, (equipment_id,))
max_seq = cursor.fetchone()[0]
# Query untuk insert data
insert_query = """
INSERT INTO lcc_tr_data (
id,
seq,
is_actual,
raw_pm_interval,
tahun, equipment_id,
raw_cm_interval, raw_cm_material_cost, raw_cm_labor_time, raw_cm_labor_human,
raw_pm_material_cost, raw_pm_labor_time, raw_pm_labor_human,
raw_oh_material_cost, raw_oh_labor_time, raw_oh_labor_human,
"raw_loss_output_MW", raw_loss_output_price
, created_by, created_at
) VALUES (
%s, %s, 0, 1, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, 'Sys', NOW()
)
"""
# Menyiapkan data untuk batch insert
records_to_insert = []
for _, row in data.iterrows():
max_seq = max_seq + 1
records_to_insert.append((
str(uuid4()), max_seq, row["year"], equipment_id,
row["cm_interval"] if row["cm_interval"] >= 1 else 1, row["cm_cost"], row["cm_labor_time"],
row["cm_labor_human"],
row["pm_cost"], row["pm_labor_time"], row["pm_labor_human"],
row["oh_cost"], row["oh_labor_time"], row["oh_labor_human"],
row["loss_output_mw"], row["loss_price"]
))
# Eksekusi batch insert
cursor.executemany(insert_query, records_to_insert)
connection.commit()
print("Data proyeksi berhasil dimasukkan ke database.")
except Exception as e:
print(f"Error saat menyimpan data ke database: {e}")
finally:
if connection:
connection.close()
# Fungsi untuk menghapus data proyeksi pada tahun tertentu
def __update_date_lcc(self, equipment_id):
try:
connection = get_connection()
if connection is None:
print("Koneksi ke database gagal.")
return
cursor = connection.cursor()
# Query untuk menghapus data berdasarkan tahun proyeksi
up_query = """
update lcc_tr_data
set
rc_cm_material_cost = raw_cm_material_cost
,rc_cm_labor_cost = (raw_cm_interval * raw_cm_labor_time * raw_cm_labor_human * COALESCE((SELECT man_hour FROM lcc_ms_year_data WHERE year = lcc_tr_data.tahun), coalesce((select value_num from lcc_ms_master where name='manhours_rate'), 0)) )
,rc_pm_material_cost = raw_pm_material_cost
,rc_pm_labor_cost = (raw_pm_labor_time * raw_pm_labor_human * COALESCE((SELECT man_hour FROM lcc_ms_year_data WHERE year = lcc_tr_data.tahun), coalesce((select value_num from lcc_ms_master where name='manhours_rate'), 0)) )
,rc_predictive_labor_cost = COALESCE( (raw_predictive_labor_time * raw_predictive_labor_human * COALESCE((SELECT man_hour FROM lcc_ms_year_data WHERE year = lcc_tr_data.tahun), coalesce((select value_num from lcc_ms_master where name='manhours_rate'), 0)) ) , 0)
,rc_oh_material_cost = raw_oh_material_cost
,rc_oh_labor_cost = (raw_oh_labor_time * raw_oh_labor_human * COALESCE((SELECT man_hour FROM lcc_ms_year_data WHERE year = lcc_tr_data.tahun), coalesce((select value_num from lcc_ms_master where name='manhours_rate'), 0)) )
,rc_project_material_cost = coalesce(raw_project_task_material_cost, 0)
,rc_lost_cost = coalesce(("raw_loss_output_MW" * raw_loss_output_price * raw_cm_interval), 0) * 1000
,rc_operation_cost = coalesce(raw_operational_cost, 0)
,rc_maintenance_cost = coalesce(raw_maintenance_cost, 0)
,rc_total_cost = (
raw_cm_material_cost
+ (raw_cm_interval * raw_cm_labor_time * raw_cm_labor_human * COALESCE((SELECT man_hour FROM lcc_ms_year_data WHERE year = lcc_tr_data.tahun), coalesce((select value_num from lcc_ms_master where name='manhours_rate'), 0)) )
+ raw_pm_material_cost
+ (raw_pm_labor_time * raw_pm_labor_human * COALESCE((SELECT man_hour FROM lcc_ms_year_data WHERE year = lcc_tr_data.tahun), coalesce((select value_num from lcc_ms_master where name='manhours_rate'), 0)) )
+ COALESCE( (raw_predictive_labor_time * raw_predictive_labor_human * COALESCE((SELECT man_hour FROM lcc_ms_year_data WHERE year = lcc_tr_data.tahun), coalesce((select value_num from lcc_ms_master where name='manhours_rate'), 0)) ) , 0)
+ raw_oh_material_cost
+ (raw_oh_labor_time * raw_oh_labor_human * COALESCE((SELECT man_hour FROM lcc_ms_year_data WHERE year = lcc_tr_data.tahun), coalesce((select value_num from lcc_ms_master where name='manhours_rate'), 0)) )
+ coalesce(raw_project_task_material_cost, 0)
+ coalesce(("raw_loss_output_MW" * raw_loss_output_price * raw_cm_interval), 0) * 1000
+ coalesce(raw_operational_cost, 0)
+ coalesce(raw_maintenance_cost, 0)
)
, updated_by = 'Sys', updated_at = NOW()
where equipment_id = %s;
update lcc_tr_data set rc_total_cost = (select acquisition_cost from lcc_ms_equipment_data where equipment_id=lcc_tr_data.equipment_id) where equipment_id = %s and seq=0;
""" # Asumsikan kolom is_actual digunakan untuk membedakan data proyeksi dan data aktual
# Eksekusi query delete
cursor.execute(up_query, (equipment_id, equipment_id))
connection.commit()
print(f"Data berhasil diupdate.")
except Exception as e:
print(f"Error saat update data proyeksi dari database: {e}")
finally:
if connection:
connection.close()
# Fungsi untuk mengambil parameter dari database
def __get_rate_and_max_year(self, equipment_id):
try:
connection = get_connection()
if connection is None:
print("Koneksi ke database gagal.")
return None, None
cursor = connection.cursor(cursor_factory=DictCursor)
# Query untuk mendapatkan rate dan max_year
query = """
SELECT
(SELECT value_num / 100 FROM lcc_ms_master where name='inflation_rate') AS rate,
(SELECT MAX(tahun) FROM lcc_tr_data WHERE is_actual = 1 AND equipment_id = %s) AS max_year
"""
cursor.execute(query, (equipment_id,))
result = cursor.fetchone()
# Debug hasil query
print(f"Result: {result}")
rate = result["rate"]
max_year = result["max_year"]
# Validasi nilai rate dan max_year
if rate is None:
raise Exception("Nilai 'rate' tidak boleh kosong. Periksa tabel 'lcc_ms_master'.")
if max_year is None:
raise Exception("Nilai 'max_year' tidak boleh kosong. Periksa tabel 'lcc_tr_data'.")
return rate, max_year
except Exception as e:
print(f"Error saat mendapatkan parameter dari database: {e}")
raise # Lempar kembali exception agar program berhenti
finally:
if connection:
connection.close()
# ======================================================================================================================================================
def predict_equipment_data(self, p_equipment_id):
try:
# Mengambil data dari database
df = self.__fetch_data_from_db(p_equipment_id)
if df is None:
print("Data tidak tersedia untuk prediksi.")
return
# Mendapatkan tahun proyeksi dari DB
par_tahun_target = self.__get_param(p_equipment_id)
# Tahun proyeksi
future_years = list(range(df["year"].max() + 1, par_tahun_target + 1))
# Hasil prediksi
predictions = {"year": future_years}
# Fungsi untuk prediksi menggunakan Linear Regression
def linear_regression_predict(column, years):
x = df["year"].values.reshape(-1, 1)
y = df[column].fillna(0).values
model = LinearRegression()
model.fit(x, y)
future_x = np.array(years).reshape(-1, 1)
preds = model.predict(future_x)
return np.abs(preds)
# Fungsi untuk prediksi menggunakan Exponential Smoothing
def exponential_smoothing_predict(column, years):
data_series = df[column].fillna(0).values
model = ExponentialSmoothing(data_series, trend="add", seasonal=None, seasonal_periods=None)
model_fit = model.fit()
preds = model_fit.forecast(len(years))
return np.abs(preds)
# Fungsi untuk prediksi menggunakan Decision Tree
def decision_tree_predict(column, years):
x = df["year"].values.reshape(-1, 1)
y = df[column].fillna(0).values
model = DecisionTreeRegressor()
model.fit(x, y)
future_x = np.array(years).reshape(-1, 1)
preds = model.predict(future_x)
return np.abs(preds)
# Mendapatkan rate dan tahun maksimal
rate, max_year = self.__get_rate_and_max_year(p_equipment_id)
pmt = 0
# Prediksi untuk setiap kolom
for column in df.columns:
if column != "year":
if "cost" in column.lower():
# Prediksi Future Value
nper = max_year - df["year"].max()
pv = -df[column].iloc[-1]
predictions[column] = self.__future_value_predict(rate, nper, pmt, pv, future_years)
elif df[column].nunique() < 5:
predictions[column] = exponential_smoothing_predict(column, future_years)
elif df[column].isnull().sum() > 0:
predictions[column] = decision_tree_predict(column, future_years)
else:
predictions[column] = linear_regression_predict(column, future_years)
# Konversi hasil ke DataFrame
predictions_df = pd.DataFrame(predictions)
# Hapus data prediksi yang ada sebelumnya
self.__delete_predictions_from_db(p_equipment_id)
# Insert hasil prediksi ke database
self.__insert_predictions_to_db(predictions_df, p_equipment_id)
# Update data untuk total RiskCost per tahun
self.__update_date_lcc(p_equipment_id)
except Exception as e:
print(f"Program dihentikan: {e}")