|
|
|
|
@ -217,16 +217,22 @@ async def get_corrective_cost_time_chart(
|
|
|
|
|
prediction_data = response.json()
|
|
|
|
|
|
|
|
|
|
# Use the last prediction value for future months
|
|
|
|
|
latest_num = prediction_data["data"][-1]["num_fail"] if prediction_data["data"] else 1
|
|
|
|
|
if not latest_num:
|
|
|
|
|
# Get the latest number from prediction data
|
|
|
|
|
latest_num = prediction_data["data"][-1]["num_fail"]
|
|
|
|
|
|
|
|
|
|
# Ensure the value is at least 1
|
|
|
|
|
if not latest_num or latest_num < 1:
|
|
|
|
|
latest_num = 1
|
|
|
|
|
else:
|
|
|
|
|
# Round the number to the nearest integer
|
|
|
|
|
latest_num = round(latest_num)
|
|
|
|
|
|
|
|
|
|
# Create prediction dictionary
|
|
|
|
|
prediction_dict = {}
|
|
|
|
|
for item in prediction_data["data"]:
|
|
|
|
|
date = datetime.datetime.strptime(item["date"], "%d %b %Y")
|
|
|
|
|
month_key = datetime.datetime(date.year, date.month, 1)
|
|
|
|
|
prediction_dict[month_key] = item["num_fail"]
|
|
|
|
|
prediction_dict[month_key] = round(item["num_fail"])
|
|
|
|
|
|
|
|
|
|
# Update monthly_data with prediction data
|
|
|
|
|
for key in prediction_dict:
|
|
|
|
|
@ -278,63 +284,13 @@ async def get_corrective_cost_time_chart(
|
|
|
|
|
|
|
|
|
|
# Convert to numpy array
|
|
|
|
|
monthly_failure = np.array(complete_data)
|
|
|
|
|
|
|
|
|
|
# try:
|
|
|
|
|
# response = requests.get(
|
|
|
|
|
# url,
|
|
|
|
|
# headers={
|
|
|
|
|
# "Content-Type": "application/json",
|
|
|
|
|
# "Authorization": f"Bearer {token}",
|
|
|
|
|
# },
|
|
|
|
|
# )
|
|
|
|
|
# data = response.json()
|
|
|
|
|
# latest_num = data["data"][-1]["num_fail"]
|
|
|
|
|
|
|
|
|
|
# if not latest_num:
|
|
|
|
|
# latest_num = 1
|
|
|
|
|
|
|
|
|
|
# # Create a complete date range for 2025
|
|
|
|
|
# date_range = [start_date + datetime.timedelta(days=x) for x in range(days_difference)]
|
|
|
|
|
|
|
|
|
|
# # Create a dictionary of existing data
|
|
|
|
|
# data_dict = {
|
|
|
|
|
# datetime.datetime.strptime(item["date"], "%d %b %Y"): item["num_fail"]
|
|
|
|
|
# for item in data["data"]
|
|
|
|
|
# }
|
|
|
|
|
|
|
|
|
|
# monthly_data = {}
|
|
|
|
|
# current_date = start_date.replace(day=1)
|
|
|
|
|
# while current_date <= end_date:
|
|
|
|
|
# monthly_data[current_date] = float('inf') # Start with infinity to find minimum
|
|
|
|
|
# # Move to next month
|
|
|
|
|
# if current_date.month == 12:
|
|
|
|
|
# current_date = datetime.datetime(current_date.year + 1, 1, 1)
|
|
|
|
|
# else:
|
|
|
|
|
# current_date = datetime.datetime(current_date.year, current_date.month + 1, 1)
|
|
|
|
|
|
|
|
|
|
# # Get the minimum value for each month
|
|
|
|
|
# for date in data_dict.keys():
|
|
|
|
|
# month_key = datetime.datetime(date.year, date.month, 1)
|
|
|
|
|
# if month_key in monthly_data and data_dict[date] is not None:
|
|
|
|
|
# # Update only if the value is lower (to get the minimum value)
|
|
|
|
|
# monthly_data[month_key] = min(monthly_data[month_key], data_dict[date])
|
|
|
|
|
|
|
|
|
|
# # Convert to list maintaining chronological order
|
|
|
|
|
# complete_data = []
|
|
|
|
|
# for month in sorted(monthly_data.keys()):
|
|
|
|
|
# # Replace any remaining infinity values with 0 or another appropriate default
|
|
|
|
|
# if monthly_data[month] == float('inf'):
|
|
|
|
|
# monthly_data[month] = 0
|
|
|
|
|
# complete_data.append(monthly_data[month])
|
|
|
|
|
|
|
|
|
|
# # Convert to numpy array
|
|
|
|
|
# monthly_failure = np.array(complete_data)
|
|
|
|
|
|
|
|
|
|
# Calculate corrective costs
|
|
|
|
|
cost_per_failure = (material_cost + service_cost) / latest_num
|
|
|
|
|
if cost_per_failure == 0:
|
|
|
|
|
raise ValueError("Cost per failure cannot be zero")
|
|
|
|
|
|
|
|
|
|
# if location_tag == "3TR-TF005":
|
|
|
|
|
# raise Exception(cost_per_failure, latest_num)
|
|
|
|
|
|
|
|
|
|
corrective_costs = monthly_failure * cost_per_failure
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|