You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
289 lines
11 KiB
Python
289 lines
11 KiB
Python
from typing import List, Optional, Tuple
|
|
from uuid import UUID
|
|
import numpy as np
|
|
from sqlalchemy import and_, func, select
|
|
from sqlalchemy.orm import joinedload
|
|
from src.database.core import DbSession
|
|
from src.overhaul_activity.service import get_all_by_session_id
|
|
from src.scope_equipment.model import ScopeEquipment
|
|
from src.workorder.model import MasterWorkOrder
|
|
from .schema import CalculationTimeConstrainsParametersCreate, CalculationTimeConstrainsRead, EquipmentResult, OptimumResult
|
|
from .model import CalculationParam, OverhaulReferenceType, CalculationData, CalculationResult
|
|
from fastapi import HTTPException, status
|
|
from src.overhaul_scope.service import get_by_scope_name, get
|
|
from src.scope_equipment.service import get_by_assetnum
|
|
|
|
|
|
def get_overhaul_cost_by_time_chart(overhaul_cost: float, days: int) -> list:
|
|
exponents = np.arange(0, days)
|
|
results = overhaul_cost / (2 ** exponents)
|
|
results = np.where(np.isfinite(results), results, 0)
|
|
return results
|
|
|
|
|
|
def get_corrective_cost_time_chart(material_cost: float, service_cost: float, days: int) -> Tuple[np.ndarray, np.ndarray]:
|
|
day_points = np.arange(0, days)
|
|
|
|
# Parameters for failure rate
|
|
base_rate = 5.4 # Base failure rate per day
|
|
acceleration = 11.2 # How quickly failure rate increases
|
|
grace_period = 15 # Days before failures start increasing significantly
|
|
|
|
# Calculate daily failure rate using sigmoid function
|
|
daily_failure_rate = base_rate / (1 + np.exp(-acceleration * (day_points - grace_period)/days))
|
|
|
|
# Calculate cumulative failures
|
|
failure_counts = np.cumsum(daily_failure_rate)
|
|
|
|
# Calculate corrective costs based on cumulative failures and combined costs
|
|
cost_per_failure = material_cost + service_cost
|
|
corrective_costs = failure_counts * cost_per_failure
|
|
|
|
return corrective_costs, daily_failure_rate
|
|
|
|
|
|
async def create_param_and_data(*, db_session: DbSession, calculation_param_in: CalculationTimeConstrainsParametersCreate, created_by: str, parameter_id: Optional[UUID] = None):
|
|
"""Creates a new document."""
|
|
if calculation_param_in.ohSessionId is None:
|
|
raise HTTPException(
|
|
status_code=status.HTTP_400_BAD_REQUEST,
|
|
detail="overhaul_session_id is required"
|
|
)
|
|
|
|
calculationData = await CalculationData.create_with_param(
|
|
db=db_session,
|
|
overhaul_session_id=calculation_param_in.ohSessionId,
|
|
avg_failure_cost=calculation_param_in.costPerFailure,
|
|
overhaul_cost=calculation_param_in.overhaulCost,
|
|
created_by=created_by,
|
|
params_id=parameter_id
|
|
)
|
|
|
|
return calculationData
|
|
|
|
|
|
async def get_calculation_result(db_session: DbSession, calculation_id: str):
|
|
calculation = await get_calculation_data_by_id(db_session=db_session, calculation_id=calculation_id)
|
|
reference = await get_by_assetnum(db_session=db_session, assetnum=calculation.reference_id) if calculation.overhaul_reference_type == OverhaulReferenceType.ASSET else await get(db_session=db_session, scope_id=calculation.reference_id)
|
|
|
|
stmt = select(CalculationResult).filter(
|
|
CalculationResult.calculation_data_id == calculation_id).order_by(CalculationResult.day)
|
|
|
|
optimum = stmt.filter(CalculationResult.day == calculation.optimum_oh_day)
|
|
results = await db_session.execute(stmt)
|
|
optimumOh = await db_session.scalar(optimum)
|
|
|
|
optimumRes = {
|
|
"overhaulCost": optimumOh.overhaul_cost,
|
|
"correctiveCost": optimumOh.corrective_cost,
|
|
"numOfFailures": optimumOh.num_failures,
|
|
"days": optimumOh.day
|
|
}
|
|
|
|
|
|
return CalculationTimeConstrainsRead(
|
|
id=calculation.id,
|
|
name=reference.scope_name if hasattr(
|
|
reference, "scope_name") else reference.master_equipment.name,
|
|
reference=reference.assetnum if hasattr(
|
|
reference, "assetnum") else reference.scope_name,
|
|
results=results.scalars().all(),
|
|
optimumOh=optimumRes
|
|
)
|
|
|
|
|
|
async def get_calculation_data_by_id(db_session: DbSession, calculation_id) -> CalculationData:
|
|
stmt = select(CalculationData).filter(CalculationData.id ==
|
|
calculation_id).options(joinedload(CalculationData.parameter))
|
|
result = await db_session.execute(stmt)
|
|
|
|
return result.unique().scalar()
|
|
|
|
|
|
# async def create_calculation_result_service(db_session: DbSession, calculation_id: UUID, costPerFailure: Optional[float] = None):
|
|
# days = 360
|
|
# calculation = await get_calculation_data_by_id(db_session=db_session, calculation_id=calculation_id)
|
|
# # reference = await get_by_assetnum(db_session=db_session, assetnum=calculation.reference_id) if calculation.overhaul_reference_type == OverhaulReferenceType.ASSET else await get(db_session=db_session, scope_id=calculation.reference_id)
|
|
|
|
# # Multiple Eequipment
|
|
# equipments_scope = get_all_by_session_id(db_session=db_session, overhaul_session_id=calculation.overhaul_session_id)
|
|
|
|
# # Parameter
|
|
# overhaulCost = calculation.parameter.overhaul_cost
|
|
# costPerFailure = costPerFailure if costPerFailure else calculation.parameter.avg_failure_cost
|
|
|
|
# overhaul_cost_points = get_overhaul_cost_by_time_chart(
|
|
# overhaulCost, days=days)
|
|
|
|
# for eq in equipments_scope:
|
|
# corrective_cost_points, dailyNumberOfFailure = get_corrective_cost_time_chart(
|
|
# costPerFailure, days)
|
|
|
|
# total_cost = overhaul_cost_points + corrective_cost_points
|
|
|
|
# optimumOHIndex = np.argmin(total_cost)
|
|
# numbersOfFailure = sum(dailyNumberOfFailure[:optimumOHIndex])
|
|
|
|
# optimum = {
|
|
# "overhaulCost": float(overhaul_cost_points[optimumOHIndex]),
|
|
# "correctiveCost": float(corrective_cost_points[optimumOHIndex]),
|
|
# "numOfFailures": int(numbersOfFailure),
|
|
# "days": int(optimumOHIndex+1)
|
|
# }
|
|
|
|
# calculation_results = []
|
|
# for i in range(days):
|
|
# result = CalculationResult(
|
|
# parameter_id=calculation.parameter_id,
|
|
# calculation_data_id=calculation.id,
|
|
# day=(i + 1),
|
|
# corrective_cost=float(corrective_cost_points[i]),
|
|
# overhaul_cost=float(overhaul_cost_points[i]),
|
|
# num_failures=int(dailyNumberOfFailure[i]),
|
|
# )
|
|
# calculation_results.append(result)
|
|
|
|
# calculation.optimum_oh_day = int(optimumOHIndex+1)
|
|
|
|
# db_session.add_all(calculation_results)
|
|
# await db_session.commit()
|
|
|
|
# return CalculationTimeConstrainsRead(
|
|
# id=calculation.id,
|
|
# name=reference.scope_name if hasattr(
|
|
# reference, "scope_name") else reference.master_equipment.name,
|
|
# reference=reference.assetnum if hasattr(
|
|
# reference, "assetnum") else reference.scope_name,
|
|
# results=calculation_results,
|
|
# optimumOh=optimum
|
|
# )
|
|
|
|
|
|
async def create_calculation_result_service(
|
|
db_session: DbSession,
|
|
calculation_id: UUID,
|
|
) -> CalculationTimeConstrainsRead:
|
|
days = 365 # Changed to 365 days as per requirement
|
|
calculation = await get_calculation_data_by_id(db_session=db_session, calculation_id=calculation_id)
|
|
|
|
# Get all equipment for this calculation session
|
|
equipments = await get_all_by_session_id(db_session=db_session, overhaul_session_id=calculation.overhaul_session_id)
|
|
|
|
# Calculate overhaul costs once since it's shared
|
|
overhaul_cost_points = get_overhaul_cost_by_time_chart(
|
|
calculation.parameter.overhaul_cost,
|
|
days=days
|
|
)
|
|
|
|
# Store results for each equipment
|
|
equipment_results: List[EquipmentResult] = []
|
|
total_corrective_costs = np.zeros(days)
|
|
total_daily_failures = np.zeros(days)
|
|
|
|
# Calculate for each equipment
|
|
for eq in equipments:
|
|
corrective_costs, daily_failures = get_corrective_cost_time_chart(
|
|
material_cost=eq.material_cost,
|
|
service_cost=eq.service_cost,
|
|
days=days
|
|
)
|
|
|
|
# Calculate individual equipment optimum points
|
|
equipment_total_cost = corrective_costs + overhaul_cost_points
|
|
equipment_optimum_index = np.argmin(equipment_total_cost)
|
|
equipment_failure_sum = sum(daily_failures[:equipment_optimum_index])
|
|
|
|
equipment_optimum = OptimumResult(
|
|
overhaul_cost=float(overhaul_cost_points[equipment_optimum_index]),
|
|
corrective_cost=float(corrective_costs[equipment_optimum_index]),
|
|
num_failures=int(equipment_failure_sum),
|
|
days=int(equipment_optimum_index + 1)
|
|
)
|
|
|
|
equipment_results.append(EquipmentResult(
|
|
corrective_costs=corrective_costs.tolist(),
|
|
overhaul_costs=overhaul_cost_points.tolist(),
|
|
daily_failures=daily_failures.tolist(),
|
|
assetnum=eq.assetnum,
|
|
material_cost=eq.material_cost,
|
|
service_cost=eq.service_cost,
|
|
optimum=equipment_optimum
|
|
))
|
|
|
|
# Add to totals
|
|
total_corrective_costs += corrective_costs
|
|
total_daily_failures += daily_failures
|
|
|
|
# Calculate optimum points using total costs
|
|
total_cost = total_corrective_costs + overhaul_cost_points
|
|
optimum_oh_index = np.argmin(total_cost)
|
|
numbers_of_failure = sum(total_daily_failures[:optimum_oh_index])
|
|
|
|
optimum = OptimumResult(
|
|
overhaul_cost=float(overhaul_cost_points[optimum_oh_index]),
|
|
corrective_cost=float(total_corrective_costs[optimum_oh_index]),
|
|
num_failures=int(numbers_of_failure),
|
|
days=int(optimum_oh_index + 1)
|
|
)
|
|
|
|
# Create calculation results for database
|
|
calculation_results = []
|
|
for i in range(days):
|
|
result = CalculationResult(
|
|
parameter_id=calculation.parameter_id,
|
|
calculation_data_id=calculation.id,
|
|
day=(i + 1),
|
|
corrective_cost=float(total_corrective_costs[i]),
|
|
overhaul_cost=float(overhaul_cost_points[i]),
|
|
num_failures=int(total_daily_failures[i]),
|
|
)
|
|
calculation_results.append(result)
|
|
|
|
# Update calculation with optimum day
|
|
calculation.optimum_oh_day = optimum.days
|
|
|
|
# Save to database
|
|
db_session.add_all(calculation_results)
|
|
await db_session.commit()
|
|
|
|
# Return results including individual equipment data
|
|
return CalculationTimeConstrainsRead(
|
|
id=calculation.id,
|
|
reference=calculation.overhaul_session_id,
|
|
results=calculation_results,
|
|
optimum_oh=optimum,
|
|
equipment_results=equipment_results
|
|
)
|
|
|
|
|
|
async def get_calculation_by_reference_and_parameter(*, db_session: DbSession, calculation_reference_id, parameter_id):
|
|
stmt = select(CalculationData).filter(and_(
|
|
CalculationData.reference_id == calculation_reference_id,
|
|
CalculationData.parameter_id == parameter_id,
|
|
))
|
|
|
|
result = await db_session.execute(stmt)
|
|
|
|
return result.scalar()
|
|
|
|
|
|
async def get_calculation_result_by_day(*, db_session: DbSession, calculation_id, simulation_day):
|
|
stmt = select(CalculationResult).filter(and_(
|
|
CalculationResult.day == simulation_day,
|
|
CalculationResult.calculation_data_id == calculation_id
|
|
))
|
|
|
|
result = await db_session.execute(stmt)
|
|
|
|
return result.scalar()
|
|
|
|
|
|
async def get_avg_cost_by_asset(*, db_session: DbSession, assetnum: str):
|
|
stmt = (
|
|
select(func.avg(MasterWorkOrder.total_cost_max).label('average_cost'))
|
|
.where(MasterWorkOrder.assetnum == assetnum)
|
|
)
|
|
|
|
result = await db_session.execute(stmt)
|
|
return result.scalar_one_or_none()
|