You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
345 lines
12 KiB
Python
345 lines
12 KiB
Python
import json
|
|
import logging
|
|
from typing import Dict, Union, Tuple
|
|
from decimal import Decimal, getcontext
|
|
import math
|
|
|
|
from src.aeros_simulation.service import get_simulation_with_calc_result
|
|
|
|
# Set high precision for decimal calculations
|
|
getcontext().prec = 50
|
|
|
|
Structure = Union[str, Dict[str, list]]
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
def prod(iterable):
|
|
"""Compute product of all elements in iterable with high precision."""
|
|
result = Decimal('1.0')
|
|
for x in iterable:
|
|
if isinstance(x, (int, float)):
|
|
x = Decimal(str(x))
|
|
result *= x
|
|
return float(result)
|
|
|
|
|
|
def system_availability(structure: Structure, availabilities: Dict[str, float]) -> float:
|
|
"""Recursively compute system availability with precise calculations."""
|
|
if isinstance(structure, str): # base case - component
|
|
if structure not in availabilities:
|
|
raise ValueError(f"Component '{structure}' not found in availabilities")
|
|
return float(Decimal(str(availabilities[structure])))
|
|
|
|
if isinstance(structure, dict):
|
|
if "series" in structure:
|
|
components = structure["series"]
|
|
if not components: # Handle empty series
|
|
return 1.0
|
|
|
|
# Series: A_system = A1 * A2 * ... * An
|
|
product = Decimal('1.0')
|
|
for s in components:
|
|
availability = system_availability(s, availabilities)
|
|
product *= Decimal(str(availability))
|
|
return float(product)
|
|
|
|
elif "parallel" in structure:
|
|
components = structure["parallel"]
|
|
if not components: # Handle empty parallel
|
|
return 0.0
|
|
|
|
# Parallel: A_system = 1 - (1-A1) * (1-A2) * ... * (1-An)
|
|
product = Decimal('1.0')
|
|
for s in components:
|
|
availability = system_availability(s, availabilities)
|
|
unavailability = Decimal('1.0') - Decimal(str(availability))
|
|
product *= unavailability
|
|
|
|
result = Decimal('1.0') - product
|
|
return float(result)
|
|
|
|
elif "k_of_n" in structure:
|
|
k = structure["k_of_n"]["k"]
|
|
components = structure["k_of_n"]["components"]
|
|
|
|
if not components:
|
|
return 0.0
|
|
|
|
component_availabilities = [system_availability(s, availabilities) for s in components]
|
|
return k_of_n_availability(component_availabilities, k)
|
|
|
|
raise ValueError(f"Invalid structure definition: {structure}")
|
|
|
|
from itertools import combinations
|
|
from decimal import Decimal
|
|
from math import comb
|
|
|
|
def k_of_n_availability(availabilities: list[float], k: int) -> float:
|
|
n = len(availabilities)
|
|
total = Decimal('0.0')
|
|
|
|
# Iterate over all combinations of components that can be working
|
|
for j in range(k, n+1):
|
|
for subset in combinations(range(n), j):
|
|
prob = Decimal('1.0')
|
|
for i in range(n):
|
|
if i in subset:
|
|
prob *= Decimal(str(availabilities[i]))
|
|
else:
|
|
prob *= (Decimal('1.0') - Decimal(str(availabilities[i])))
|
|
total += prob
|
|
|
|
return float(total)
|
|
|
|
|
|
|
|
def get_all_components(structure: Structure) -> set:
|
|
"""Extract all component names from a structure."""
|
|
components = set()
|
|
|
|
def extract_components(substructure):
|
|
if isinstance(substructure, str):
|
|
components.add(substructure)
|
|
elif isinstance(substructure, dict):
|
|
for component_list in substructure.values():
|
|
for component in component_list:
|
|
extract_components(component)
|
|
|
|
extract_components(structure)
|
|
return components
|
|
|
|
|
|
def birnbaum_importance(structure: Structure, availabilities: Dict[str, float], component: str) -> float:
|
|
"""
|
|
Calculate Birnbaum importance for a component.
|
|
|
|
Birnbaum importance = ∂A_system/∂A_component
|
|
|
|
This is approximated as:
|
|
I_B = A_system(A_i=1) - A_system(A_i=0)
|
|
|
|
Where A_i is the availability of component i.
|
|
"""
|
|
# Create copies for calculations
|
|
avail_up = availabilities.copy()
|
|
avail_down = availabilities.copy()
|
|
|
|
# Set component availability to 1 (perfect)
|
|
avail_up[component] = 1.0
|
|
|
|
# Set component availability to 0 (failed)
|
|
avail_down[component] = 0.0
|
|
|
|
# Calculate system availability in both cases
|
|
system_up = system_availability(structure, avail_up)
|
|
system_down = system_availability(structure, avail_down)
|
|
|
|
# Birnbaum importance is the difference
|
|
return system_up - system_down
|
|
|
|
|
|
def criticality_importance(structure: Structure, availabilities: Dict[str, float], component: str) -> float:
|
|
"""
|
|
Calculate Criticality importance for a component.
|
|
|
|
Criticality importance = Birnbaum importance * (1 - A_component) / (1 - A_system)
|
|
|
|
This represents the probability that component i is critical to system failure.
|
|
"""
|
|
birnbaum = birnbaum_importance(structure, availabilities, component)
|
|
system_avail = system_availability(structure, availabilities)
|
|
component_avail = availabilities[component]
|
|
|
|
if system_avail >= 1.0: # Perfect system
|
|
return 0.0
|
|
|
|
criticality = birnbaum * (1.0 - component_avail) / (1.0 - system_avail)
|
|
return criticality
|
|
|
|
|
|
def fussell_vesely_importance(structure: Structure, availabilities: Dict[str, float], component: str) -> float:
|
|
"""
|
|
Calculate Fussell-Vesely importance for a component.
|
|
|
|
FV importance = (A_system - A_system(A_i=0)) / A_system
|
|
|
|
This represents the fractional decrease in system availability when component i fails.
|
|
"""
|
|
system_avail = system_availability(structure, availabilities)
|
|
|
|
if system_avail <= 0.0:
|
|
return 0.0
|
|
|
|
# Calculate system availability with component failed
|
|
avail_down = availabilities.copy()
|
|
avail_down[component] = 0.0
|
|
system_down = system_availability(structure, avail_down)
|
|
|
|
fv = (system_avail - system_down) / system_avail
|
|
return fv
|
|
|
|
|
|
def compute_all_importance_measures(structure: Structure, availabilities: Dict[str, float]) -> Dict[str, Dict[str, float]]:
|
|
"""
|
|
Compute all importance measures for each component.
|
|
|
|
Returns:
|
|
Dictionary with component names as keys and importance measures as values
|
|
"""
|
|
# Normalize availabilities to 0-1 range if needed
|
|
normalized_availabilities = {}
|
|
for k, v in availabilities.items():
|
|
if v > 1.0:
|
|
normalized_availabilities[k] = v / 100.0
|
|
else:
|
|
normalized_availabilities[k] = v
|
|
# Clamp to valid range [0, 1]
|
|
normalized_availabilities[k] = max(0.0, min(1.0, normalized_availabilities[k]))
|
|
|
|
# Get all components in the system
|
|
all_components = get_all_components(structure)
|
|
|
|
# Check for missing components
|
|
missing_components = all_components - set(normalized_availabilities.keys())
|
|
if missing_components:
|
|
log.warning(f"Missing components (assuming 100% availability): {missing_components}")
|
|
for comp in missing_components:
|
|
normalized_availabilities[comp] = 1.0
|
|
|
|
# Calculate system baseline availability
|
|
system_avail = system_availability(structure, normalized_availabilities)
|
|
|
|
# Calculate importance measures for each component
|
|
results = {}
|
|
total_birnbaum = 0.0
|
|
|
|
for component in all_components:
|
|
if component in normalized_availabilities:
|
|
birnbaum = birnbaum_importance(structure, normalized_availabilities, component)
|
|
criticality = criticality_importance(structure, normalized_availabilities, component)
|
|
fv = fussell_vesely_importance(structure, normalized_availabilities, component)
|
|
|
|
results[component] = {
|
|
'birnbaum_importance': birnbaum,
|
|
'criticality_importance': criticality,
|
|
'fussell_vesely_importance': fv,
|
|
'component_availability': normalized_availabilities[component]
|
|
}
|
|
|
|
total_birnbaum += birnbaum
|
|
|
|
# Calculate contribution percentages based on Birnbaum importance
|
|
if total_birnbaum > 0:
|
|
for component in results:
|
|
contribution_pct = results[component]['birnbaum_importance'] / total_birnbaum
|
|
results[component]['contribution_percentage'] = contribution_pct
|
|
else:
|
|
for component in results:
|
|
results[component]['contribution_percentage'] = 0.0
|
|
|
|
# Add system-level information
|
|
results['_system_info'] = {
|
|
'system_availability': system_avail,
|
|
'system_unavailability': 1.0 - system_avail,
|
|
'total_birnbaum_importance': total_birnbaum
|
|
}
|
|
|
|
return results
|
|
|
|
|
|
def calculate_contribution_accurate(availabilities: Dict[str, float], structure_file: str = 'src/aeros_contribution/result.json') -> Dict[str, Dict[str, float]]:
|
|
"""
|
|
Calculate component contributions using proper importance measures.
|
|
|
|
Args:
|
|
availabilities: Dictionary of component availabilities
|
|
structure_file: Path to RBD structure JSON file
|
|
|
|
Returns:
|
|
Dictionary containing all importance measures and contributions
|
|
"""
|
|
try:
|
|
with open(structure_file, 'r') as model_file:
|
|
structure = json.load(model_file)
|
|
except FileNotFoundError:
|
|
raise FileNotFoundError(f"Structure file not found: {structure_file}")
|
|
except json.JSONDecodeError:
|
|
raise ValueError(f"Invalid JSON in structure file: {structure_file}")
|
|
|
|
# Compute all importance measures
|
|
results = compute_all_importance_measures(structure, availabilities)
|
|
|
|
# Extract system information
|
|
system_info = results.pop('_system_info')
|
|
|
|
# Log results
|
|
log.info(f"System Availability: {system_info['system_availability']:.6f}")
|
|
log.info(f"System Unavailability: {system_info['system_unavailability']:.6f}")
|
|
|
|
# Sort components by Birnbaum importance (most critical first)
|
|
sorted_components = sorted(results.items(),
|
|
key=lambda x: x[1]['birnbaum_importance'],
|
|
reverse=True)
|
|
|
|
print("\n=== COMPONENT IMPORTANCE ANALYSIS ===")
|
|
print(f"System Availability: {system_info['system_availability']:.6f} ({system_info['system_availability']*100:.4f}%)")
|
|
print(f"System Unavailability: {system_info['system_unavailability']:.6f}")
|
|
print("\nComponent Rankings (by Birnbaum Importance):")
|
|
print(f"{'Component':<20} {'Availability':<12} {'Birnbaum':<12} {'Criticality':<12} {'F-V':<12} {'Contribution%':<12}")
|
|
print("-" * 92)
|
|
|
|
for component, measures in sorted_components:
|
|
print(f"{component:<20} {measures['component_availability']:<12.6f} "
|
|
f"{measures['birnbaum_importance']:<12.6f} {measures['criticality_importance']:<12.6f} "
|
|
f"{measures['fussell_vesely_importance']:<12.6f} {measures['contribution_percentage']*100:<12.4f}")
|
|
|
|
# Return results with system info included
|
|
# results['_system_info'] = system_info
|
|
|
|
return results
|
|
|
|
|
|
# Legacy function for backwards compatibility
|
|
def calculate_contribution(availabilities):
|
|
"""Legacy function - redirects to improved version."""
|
|
try:
|
|
return calculate_contribution_accurate(availabilities)
|
|
except Exception as e:
|
|
log.error(f"Error in contribution calculation: {e}")
|
|
raise
|
|
|
|
|
|
|
|
|
|
|
|
async def update_contribution_bulk_mappings(*, db_session, simulation_id):
|
|
"""Update contribution mappings with precise calculations."""
|
|
calc_results = await get_simulation_with_calc_result(
|
|
db_session=db_session,
|
|
simulation_id=simulation_id,
|
|
node_type="RegularNode"
|
|
)
|
|
|
|
# Ensure availability values are properly normalized
|
|
availabilities = {}
|
|
for calc in calc_results:
|
|
availability = calc.availability
|
|
availabilities[calc.aeros_node.node_name] = availability
|
|
|
|
importance = calculate_contribution(availabilities)
|
|
|
|
# Prepare bulk update data with rounded contributions to avoid precision issues in DB
|
|
for calc in calc_results:
|
|
# Round to reasonable precision for database storage
|
|
eq_importance = importance.get(calc.aeros_node.node_name, {})
|
|
|
|
if not eq_importance:
|
|
continue
|
|
|
|
calc.contribution = importance.get(calc.aeros_node.node_name).get('birnbaum_importance', 0)
|
|
calc.criticality = importance.get(calc.aeros_node.node_name).get('criticality_importance', 0)
|
|
calc.contribution_factor = importance.get(calc.aeros_node.node_name).get('fussell_vesely_importance', 0)
|
|
|
|
await db_session.commit()
|
|
|
|
return importance |