|
|
|
|
@ -4,10 +4,10 @@ import json
|
|
|
|
|
import uuid
|
|
|
|
|
import logging
|
|
|
|
|
import time
|
|
|
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
|
|
|
|
|
|
|
|
from airflow import DAG
|
|
|
|
|
from airflow.operators.python import PythonOperator, BranchPythonOperator
|
|
|
|
|
from airflow.operators.trigger_dagrun import TriggerDagRunOperator
|
|
|
|
|
from airflow.operators.dummy import DummyOperator
|
|
|
|
|
from airflow.utils.dates import days_ago
|
|
|
|
|
from airflow.models import Variable, DagRun
|
|
|
|
|
@ -49,7 +49,7 @@ def is_dag_already_running(**context):
|
|
|
|
|
|
|
|
|
|
def fetch_daily_maximo_data(**context):
|
|
|
|
|
"""
|
|
|
|
|
Fetch data from the Maximo endpoint using GET method and process the response
|
|
|
|
|
Fetch data from the Maximo endpoint using GET method with async pattern
|
|
|
|
|
"""
|
|
|
|
|
# Generate request ID for tracking
|
|
|
|
|
request_id = str(uuid.uuid4())
|
|
|
|
|
@ -60,7 +60,7 @@ def fetch_daily_maximo_data(**context):
|
|
|
|
|
fetch_url = f"{base_url}{endpoint}"
|
|
|
|
|
|
|
|
|
|
# Log before sending request
|
|
|
|
|
logger.info(f"Sending GET request to {fetch_url} (Request ID: {request_id})")
|
|
|
|
|
logger.info(f"Sending async GET request to {fetch_url} (Request ID: {request_id})")
|
|
|
|
|
|
|
|
|
|
# Request headers
|
|
|
|
|
headers = {
|
|
|
|
|
@ -68,76 +68,67 @@ def fetch_daily_maximo_data(**context):
|
|
|
|
|
"X-Request-ID": request_id,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
# Use requests library directly with increased timeout
|
|
|
|
|
response = requests.get(
|
|
|
|
|
# Create a response callback function
|
|
|
|
|
def response_callback(future):
|
|
|
|
|
try:
|
|
|
|
|
# Get the response from the future, with a short timeout just to confirm
|
|
|
|
|
# the request was properly initiated
|
|
|
|
|
response = future.result(timeout=10)
|
|
|
|
|
logger.info(
|
|
|
|
|
f"Request initiated successfully (Request ID: {request_id}), status: {response.status_code}"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# We don't wait for the full response processing, as it may take longer than Airflow's task timeout
|
|
|
|
|
|
|
|
|
|
except requests.exceptions.Timeout:
|
|
|
|
|
logger.error(f"Request connection timed out (Request ID: {request_id})")
|
|
|
|
|
except Exception as e:
|
|
|
|
|
logger.error(f"Error initiating request (Request ID: {request_id}): {str(e)}")
|
|
|
|
|
|
|
|
|
|
# Using ThreadPoolExecutor for async operation
|
|
|
|
|
with ThreadPoolExecutor(max_workers=1) as executor:
|
|
|
|
|
# Submit request to executor with a longer timeout for the overall operation
|
|
|
|
|
future = executor.submit(
|
|
|
|
|
requests.get,
|
|
|
|
|
url=fetch_url,
|
|
|
|
|
headers=headers,
|
|
|
|
|
timeout=60, # Increased timeout to 60 seconds
|
|
|
|
|
timeout=600, # Increased timeout to 10 minutes for the actual API call
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
logger.info(
|
|
|
|
|
f"Request completed (Request ID: {request_id}), status: {response.status_code}"
|
|
|
|
|
)
|
|
|
|
|
# Add callback that will execute when future completes
|
|
|
|
|
future.add_done_callback(response_callback)
|
|
|
|
|
|
|
|
|
|
if response.status_code == 200:
|
|
|
|
|
logger.info(f"Request successful (Request ID: {request_id})")
|
|
|
|
|
# Don't wait for future to complete, let it run in background
|
|
|
|
|
logger.info(f"Async request has been dispatched (Request ID: {request_id})")
|
|
|
|
|
|
|
|
|
|
# Parse JSON response
|
|
|
|
|
response_data = response.json()
|
|
|
|
|
maximo_message = response_data.get("message", "No message provided")
|
|
|
|
|
# Push the request details to XCom for tracking
|
|
|
|
|
result_dict = {
|
|
|
|
|
"request_id": request_id,
|
|
|
|
|
"status": "initiated",
|
|
|
|
|
"timestamp": datetime.now().isoformat(),
|
|
|
|
|
"message": "Fetch Daily Maximo request initiated asynchronously",
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
logger.info(f"Maximo response message: {maximo_message}")
|
|
|
|
|
ti = context["ti"]
|
|
|
|
|
ti.xcom_push(key="fetch_result", value=result_dict)
|
|
|
|
|
|
|
|
|
|
return {
|
|
|
|
|
"request_id": request_id,
|
|
|
|
|
"status_code": response.status_code,
|
|
|
|
|
"timestamp": datetime.now().isoformat(),
|
|
|
|
|
"message": f"Fetch Daily Maximo Runs Successfully! {maximo_message}",
|
|
|
|
|
}
|
|
|
|
|
else:
|
|
|
|
|
logger.error(
|
|
|
|
|
f"Request failed (Request ID: {request_id}), status: {response.status_code}"
|
|
|
|
|
)
|
|
|
|
|
return {
|
|
|
|
|
"request_id": request_id,
|
|
|
|
|
"status_code": response.status_code,
|
|
|
|
|
"timestamp": datetime.now().isoformat(),
|
|
|
|
|
"message": f"Failed to fetch daily Maximo data. Status code: {response.status_code}",
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
except requests.exceptions.Timeout:
|
|
|
|
|
logger.error(f"Request timed out (Request ID: {request_id})")
|
|
|
|
|
return {
|
|
|
|
|
"request_id": request_id,
|
|
|
|
|
"status_code": 504,
|
|
|
|
|
"timestamp": datetime.now().isoformat(),
|
|
|
|
|
"message": "Request timed out while fetching Maximo data",
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
logger.error(f"Error sending request (Request ID: {request_id}): {str(e)}")
|
|
|
|
|
return {
|
|
|
|
|
"request_id": request_id,
|
|
|
|
|
"status_code": 500,
|
|
|
|
|
"timestamp": datetime.now().isoformat(),
|
|
|
|
|
"message": f"Exception in Fetch Daily Maximo: {str(e)}",
|
|
|
|
|
}
|
|
|
|
|
return result_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def process_response(**context):
|
|
|
|
|
"""
|
|
|
|
|
Process the response from the Maximo API
|
|
|
|
|
In async mode, this simply acknowledges the request was made
|
|
|
|
|
"""
|
|
|
|
|
ti = context["ti"]
|
|
|
|
|
result = ti.xcom_pull(task_ids="fetch_daily_maximo_data", key="fetch_result")
|
|
|
|
|
|
|
|
|
|
if result:
|
|
|
|
|
logger.info(f"Processing result: {result}")
|
|
|
|
|
# Add any additional processing logic here
|
|
|
|
|
logger.info(f"Processing async request result: {result}")
|
|
|
|
|
# Since we're using fire-and-forget pattern, we just acknowledge the request was made
|
|
|
|
|
|
|
|
|
|
# Sleep for a short time to simulate processing
|
|
|
|
|
time.sleep(2)
|
|
|
|
|
# In production, you might want to implement a separate DAG or task
|
|
|
|
|
# to check the status of the asynchronous job later
|
|
|
|
|
|
|
|
|
|
return True
|
|
|
|
|
return False
|
|
|
|
|
@ -155,13 +146,13 @@ default_args = {
|
|
|
|
|
|
|
|
|
|
# Define the DAG
|
|
|
|
|
dag = DAG(
|
|
|
|
|
"fetch_daily_maximo_data",
|
|
|
|
|
"fetch_daily_maximo_data_async",
|
|
|
|
|
default_args=default_args,
|
|
|
|
|
description="A DAG to fetch data from Maximo API endpoint on a schedule daily",
|
|
|
|
|
description="A DAG to fetch data from Maximo API endpoint asynchronously on a daily schedule",
|
|
|
|
|
# Schedule to run daily at 21:00, 22:00, and 23:00
|
|
|
|
|
schedule_interval="0 21-23 * * *",
|
|
|
|
|
start_date=days_ago(1),
|
|
|
|
|
tags=["maximo", "api", "fetch", "continuous", "daily"],
|
|
|
|
|
tags=["maximo", "api", "fetch", "continuous", "daily", "async"],
|
|
|
|
|
catchup=False,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|