|
|
|
|
@ -59,84 +59,93 @@ from .utils import get_months_between
|
|
|
|
|
# results = np.where(np.isfinite(results), results, 0)
|
|
|
|
|
# return results
|
|
|
|
|
|
|
|
|
|
async def get_corrective_cost_time_chart(
|
|
|
|
|
material_cost: float,
|
|
|
|
|
service_cost: float,
|
|
|
|
|
location_tag: str,
|
|
|
|
|
token,
|
|
|
|
|
start_date: datetime.datetime,
|
|
|
|
|
end_date: datetime.datetime
|
|
|
|
|
) -> Tuple[np.ndarray, np.ndarray]:
|
|
|
|
|
days_difference = (end_date - start_date).days
|
|
|
|
|
|
|
|
|
|
# async def get_corrective_cost_time_chart(
|
|
|
|
|
# material_cost: float, service_cost: float, location_tag: str, token, max_days: int
|
|
|
|
|
# ) -> Tuple[np.ndarray, np.ndarray]:
|
|
|
|
|
url = f"http://192.168.1.82:8000/reliability/main/number-of-failures/{location_tag}/{start_date.strftime('%Y-%m-%d')}/{end_date.strftime('%Y-%m-%d')}"
|
|
|
|
|
|
|
|
|
|
# start_date = datetime.datetime(2025, 1, 1)
|
|
|
|
|
# end_date = start_date + datetime.timedelta(days=max_days)
|
|
|
|
|
# url = f"http://192.168.1.82:8000/reliability/main/number-of-failures/{location_tag}/{start_date.strftime('%Y-%m-%d')}/{end_date.strftime('%Y-%m-%d')}"
|
|
|
|
|
|
|
|
|
|
# try:
|
|
|
|
|
# response = requests.get(
|
|
|
|
|
# url,
|
|
|
|
|
# headers={
|
|
|
|
|
# "Content-Type": "application/json",
|
|
|
|
|
# "Authorization": f"Bearer {token}",
|
|
|
|
|
# },
|
|
|
|
|
# )
|
|
|
|
|
# data = response.json()
|
|
|
|
|
|
|
|
|
|
# ## Get latest data fromdata_today
|
|
|
|
|
# # latest_num_of_fail:float = get_latest_numOfFail(location_tag=location_tag, token=token)
|
|
|
|
|
try:
|
|
|
|
|
response = requests.get(
|
|
|
|
|
url,
|
|
|
|
|
headers={
|
|
|
|
|
"Content-Type": "application/json",
|
|
|
|
|
"Authorization": f"Bearer {token}",
|
|
|
|
|
},
|
|
|
|
|
)
|
|
|
|
|
data = response.json()
|
|
|
|
|
latest_num = data["data"][-1]["num_fail"]
|
|
|
|
|
|
|
|
|
|
# latest_num = data["data"][-1]["num_fail"]
|
|
|
|
|
if not latest_num:
|
|
|
|
|
latest_num = 1
|
|
|
|
|
|
|
|
|
|
# if not latest_num:
|
|
|
|
|
# latest_num = 1
|
|
|
|
|
# Create a complete date range for 2025
|
|
|
|
|
# start_date = datetime.datetime(2025, 1, 1)
|
|
|
|
|
# date_range = [start_date + datetime.timedelta(days=x) for x in range(days_difference)]
|
|
|
|
|
|
|
|
|
|
# # Create a complete date range for 2024
|
|
|
|
|
# start_date = datetime.datetime(2025, 1, 1)
|
|
|
|
|
# date_range = [start_date + datetime.timedelta(days=x) for x in range(max_days)]
|
|
|
|
|
# Create a dictionary of existing data
|
|
|
|
|
data_dict = {
|
|
|
|
|
datetime.datetime.strptime(item["date"], "%d %b %Y"): item["num_fail"]
|
|
|
|
|
for item in data["data"]
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
# # Create a dictionary of existing data
|
|
|
|
|
# data_dict = {
|
|
|
|
|
# datetime.datetime.strptime(item["date"], "%d %b %Y"): item["num_fail"]
|
|
|
|
|
# for item in data["data"]
|
|
|
|
|
# }
|
|
|
|
|
# Initialize all months in the range with 0
|
|
|
|
|
monthly_data = {}
|
|
|
|
|
current_date = start_date.replace(day=1)
|
|
|
|
|
while current_date <= end_date:
|
|
|
|
|
monthly_data[current_date] = 0
|
|
|
|
|
# Move to next month
|
|
|
|
|
if current_date.month == 12:
|
|
|
|
|
current_date = datetime.datetime(current_date.year + 1, 1, 1)
|
|
|
|
|
else:
|
|
|
|
|
current_date = datetime.datetime(current_date.year, current_date.month + 1, 1)
|
|
|
|
|
|
|
|
|
|
# # Fill in missing dates with nearest available value
|
|
|
|
|
# complete_data = []
|
|
|
|
|
# last_known_value = 0 # Default value if no data is available
|
|
|
|
|
# not_full_data = []
|
|
|
|
|
# Get the last day's value for each month
|
|
|
|
|
for date in data_dict.keys():
|
|
|
|
|
month_key = datetime.datetime(date.year, date.month, 1)
|
|
|
|
|
if month_key in monthly_data and data_dict[date] is not None:
|
|
|
|
|
# Update only if the value is higher (to get the last day's value)
|
|
|
|
|
monthly_data[month_key] = max(monthly_data[month_key], data_dict[date])
|
|
|
|
|
|
|
|
|
|
# for date in date_range:
|
|
|
|
|
# if date in data_dict:
|
|
|
|
|
# if data_dict[date] is not None:
|
|
|
|
|
# last_known_value = data_dict[date]
|
|
|
|
|
# complete_data.append(last_known_value)
|
|
|
|
|
# else:
|
|
|
|
|
# complete_data.append(0)
|
|
|
|
|
# # Convert to numpy array
|
|
|
|
|
# daily_failure = np.array(complete_data)
|
|
|
|
|
# Convert to list maintaining chronological order
|
|
|
|
|
complete_data = []
|
|
|
|
|
for month in sorted(monthly_data.keys()):
|
|
|
|
|
complete_data.append(monthly_data[month])
|
|
|
|
|
|
|
|
|
|
# hourly_failure = np.repeat(daily_failure, 24) / 24
|
|
|
|
|
# Convert to numpy array
|
|
|
|
|
monthly_failure = np.array(complete_data)
|
|
|
|
|
|
|
|
|
|
# # failure_counts = np.cumsum(daily_failure)
|
|
|
|
|
# Calculate corrective costs
|
|
|
|
|
cost_per_failure = (material_cost + service_cost) / latest_num
|
|
|
|
|
if cost_per_failure == 0:
|
|
|
|
|
raise ValueError("Cost per failure cannot be zero")
|
|
|
|
|
|
|
|
|
|
# # Calculate corrective costs
|
|
|
|
|
# cost_per_failure = (material_cost + service_cost) / latest_num
|
|
|
|
|
corrective_costs = monthly_failure * cost_per_failure
|
|
|
|
|
|
|
|
|
|
# if cost_per_failure == 0:
|
|
|
|
|
# raise ValueError("Cost per failure cannot be zero")
|
|
|
|
|
|
|
|
|
|
# corrective_costs = hourly_failure * cost_per_failure
|
|
|
|
|
|
|
|
|
|
# return corrective_costs, hourly_failure
|
|
|
|
|
return corrective_costs, monthly_failure
|
|
|
|
|
|
|
|
|
|
# except Exception as e:
|
|
|
|
|
# print(f"Error fetching or processing data: {str(e)}")
|
|
|
|
|
# raise
|
|
|
|
|
except Exception as e:
|
|
|
|
|
print(f"Error fetching or processing data: {str(e)}")
|
|
|
|
|
raise
|
|
|
|
|
|
|
|
|
|
async def get_corrective_cost_time_chart(
|
|
|
|
|
material_cost: float,
|
|
|
|
|
service_cost: float,
|
|
|
|
|
location_tag: str,
|
|
|
|
|
token,
|
|
|
|
|
start_date: datetime.datetime,
|
|
|
|
|
end_date: datetime.datetime
|
|
|
|
|
) -> Tuple[np.ndarray, np.ndarray]:
|
|
|
|
|
|
|
|
|
|
# async def get_corrective_cost_time_chart(
|
|
|
|
|
# material_cost: float,
|
|
|
|
|
# service_cost: float,
|
|
|
|
|
# location_tag: str,
|
|
|
|
|
# token,
|
|
|
|
|
# start_date: datetime.datetime,
|
|
|
|
|
# end_date: datetime.datetime
|
|
|
|
|
# ) -> Tuple[np.ndarray, np.ndarray]:
|
|
|
|
|
days_difference = (end_date - start_date).days
|
|
|
|
|
|
|
|
|
|
today = datetime.datetime.now().replace(hour=0, minute=0, second=0, microsecond=0)
|
|
|
|
|
@ -159,8 +168,11 @@ async def get_corrective_cost_time_chart(
|
|
|
|
|
)
|
|
|
|
|
history_data = response.json()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Process historical data - accumulate failures by month
|
|
|
|
|
history_dict = {}
|
|
|
|
|
monthly_failures = {}
|
|
|
|
|
|
|
|
|
|
for item in history_data["data"]:
|
|
|
|
|
date = datetime.datetime.strptime(item["date"], "%d %b %Y")
|
|
|
|
|
month_key = datetime.datetime(date.year, date.month, 1)
|
|
|
|
|
@ -173,10 +185,22 @@ async def get_corrective_cost_time_chart(
|
|
|
|
|
if item["num_fail"] is not None:
|
|
|
|
|
history_dict[month_key] += item["num_fail"]
|
|
|
|
|
|
|
|
|
|
# Update monthly_data with historical data
|
|
|
|
|
# Sort months chronologically
|
|
|
|
|
sorted_months = sorted(monthly_failures.keys())
|
|
|
|
|
|
|
|
|
|
# Calculate cumulative failures
|
|
|
|
|
running_total = 0
|
|
|
|
|
for month in sorted_months:
|
|
|
|
|
running_total += monthly_failures[month]
|
|
|
|
|
history_dict[month] = running_total
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Update monthly_data with cumulative historical data
|
|
|
|
|
monthly_data.update(history_dict)
|
|
|
|
|
except Exception as e:
|
|
|
|
|
print(f"Error fetching historical data: {e}")
|
|
|
|
|
# print(f"Error fetching historical data: {e}")
|
|
|
|
|
raise Exception(e)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
latest_num = 1
|
|
|
|
|
|
|
|
|
|
|